Control Seminar

Wind Farm Modeling and Control for Power Grid Support

Dennice GaymeCarol Croft Linde Faculty Scholar; Associate Professor of Mechanical EngineeringJohns Hopkins University
SHARE:

***Event will take place via Zoom. Zoom link and password will be distributed to the Controls Group e-mail list-serv. To join this list-serv, please send an (empty) email message to [email protected] with the word “subscribe” in the subject line. Zoom information is also available upon request to Katherine Godwin ([email protected]).

ABSTRACT: Traditional wind farm modeling and control strategies focus on layout design and maximizing wind power output. However, transitioning into the role of a major power system supplier necessitates new models and control designs that enable wind farms to provide the grid services that are often required of conventional generators. This talk introduces a model-based wind farm control approach for tracking a time-varying power signal, such as a power grid frequency regulation command. The underlying time-varying wake model extends commonly used static models to account for wake advection and lateral wake interactions. We perform numerical studies of the controlled wind farm using a large eddy simulation (LES) with actuator disks as a wind farm model. Our results show that embedding this type of dynamic wake model within a model-based receding horizon control framework leads to a controlled wind farm that qualifies to participate in markets for correcting short-term imbalances in active power generation and load on the power grid (frequency regulation). Accounting for the aerodynamic interactions between turbines within the proposed control strategy yields large increases in efficiency over prevailing approaches by achieving commensurate up-regulation with smaller derates (reductions in wind farm power set points). This potential for derate reduction has important economic implications because smaller derates directly correspond to reductions in the loss of bulk power revenue associated with participating in regulation markets.

BIO: Dennice F. Gayme is an Associate Professor in Mechanical Engineering and the Carol Croft Linde Faculty Scholar at the Johns Hopkins University. She earned her B. Eng. & Society from McMaster University in 1997 and an M.S. from the University of California at Berkeley in 1998, both in Mechanical Engineering. She received her Ph.D. in Control and Dynamical Systems in 2010 from the California Institute of Technology, where she was a recipient of the P.E.O. scholar award in 2007 and the James Irvine Foundation Graduate Fellowship in 2003. Her research interests are in modeling, analysis and control for spatially distributed and large-scale networked systems in applications such as wall-bounded turbulent flows, wind farms, power grids and vehicular networks. She was a recipient of the JHU Catalyst Award in 2015, ONR Young Investigator and NSF CAREER awards in 2017, a JHU Discovery Award in 2019 and a Whiting School of Engineering Johns Hopkins Alumni Association Excellence in Teaching Award, 2020.

Sponsored by

UM ECEBoschFordToyota

Faculty Host

Peter SeilerAssociate ProfessorUM EECS