Dissertation Defense

Systematic Controller Design for Dynamic 3D Bipedal Robot Walking

Brian BussPhD Candidate

Virtual constraints and hybrid zero dynamics (HZD) have emerged as a powerful framework for controlling bipedal robot locomotion, as evidenced by the robust, energetically efficient, and natural-looking walking and running gaits achieved by planar robots such as Rabbit, ERNIE, and MABEL. However, the extension to 3D robots is more subtle, as the choice of virtual constraints has a deciding effect on the stability of a periodic orbit. Furthermore, previous methods did not provide a systematic means of designing virtual constraints to ensure stability.

This thesis makes both experimental and theoretical contributions to the control of underactuated 3D bipedal robots. On the experimental side, we present the first realization of dynamic 3D walking using virtual constraints. The experimental success is achieved by augmenting a robust planar walking gait with a novel virtual constraint for the lateral swing hip angle. The resulting controller is tested in the laboratory on a human-scale bipedal robot (MARLO) and demonstrated to stabilize the lateral motion for unassisted 3D walking at approximately 1 m/s. MARLO is one of only two known robots to walk in 3D with stilt-like feet.

On the theoretical side, we introduce a method to systematically tune a given choice of virtual constraints in order to stabilize a periodic orbit of a hybrid system. We demonstrate the method to stabilize a walking gait for MARLO, and show that the optimized controller leads to improved lateral control compared to the nominal virtual constraints. We also describe several extensions of the basic method, allowing the use of a restricted Poincaré map and the incorporation of disturbance rejection metrics in the optimization. Together, these methods comprise an important contribution to the theory of HZD.

Sponsored by


Faculty Host

Jessy Grizzle