Communications and Signal Processing Seminar

Communication-Efficient Optimization Methods for Federated Learning

Gauri JoshiAssistant ProfessorElectrical and Computer Engineering, Carnegie Mellon University

Abstract:  The future of machine learning lies in moving both data collection as well as model training to the edge. The emerging area of federated learning seeks to achieve this goal by orchestrating distributed model training using a large number of resource-constrained mobile devices that collect data from their environment. Due to limited communication capabilities as well as privacy concerns, the data collected by these devices cannot be sent to the cloud for centralized processing. Instead, the nodes perform local training iterations and only send the resulting model to the cloud. In this talk, I will present our recent work on federated optimization algorithms that are system-aware (robust to communication limitations and computation variabilities) and data-aware (can handle heterogeneity in the size and distribution of the training data). 

Speaker Bio:  Gauri Joshi is an assistant professor in the ECE department at Carnegie Mellon University since September 2017. Previously, she worked as a Research Staff Member at IBM T. J. Watson Research Center. Gauri completed her Ph.D. from MIT EECS in June 2016, advised by Prof. Gregory Wornell. She received her B.Tech and M.Tech in Electrical Engineering from the Indian Institute of Technology (IIT) Bombay in 2010. Her awards and honors include the NSF CAREER Award (2021), ACM Sigmetrics Best Paper Award (2020), NSF CRII Award (2018), IBM Faculty Research Award (2017), Best Thesis Prize in Computer science at MIT (2012) and Institute Gold Medal of IIT Bombay (2010).

Join Zoom Meeting

Meeting ID: 975 9857 1292

Passcode: XXXXXX (Will be sent via email to attendees)

Zoom Passcode information is also available upon request to Shelly (Michele) Feldkamp ([email protected]).


See full seminar by Professor Joshi