Communications and Signal Processing Seminar

Deep Generative models and Inverse Problems

Alexandros DimakisProfessorElectrical and Computer Engineering, The University of Texas at Austin

Abstract:  Modern deep generative models like GANs, VAEs and invertible flows are showing amazing results on modeling high-dimensional distributions, especially for images. We will show how they can be used to solve inverse problems by generalizing compressed sensing beyond sparsity, extending the theory of Restricted Isometries to sets created by generative models. We will present the general framework, new results and open problems in this space.

Bio: Alex Dimakis is a Professor at the Electrical and Computer Engineering department, University of Texas at Austin. He received his Ph.D. from UC Berkeley and the Diploma degree from the National Technical University of Athens. His research interests include information theory, coding theory and machine learning.

Join Zoom Meeting

Meeting ID: 975 9857 1292

Passcode: XXXXXX (Will be sent via email to attendees)



See full seminar by Professor Dimakis