Dissertation Defense

Organic Photodiodes and Their Optoelectronic Applications

SHARE:

Recently, organic photodiodes (OPDs) have been acknowledged as a next-generation device for photovoltaic and image sensor applications due to their advantages of large area process, light weight, mechanical flexibility, and excellent photoresponse. This dissertation targets for the development and understanding of high performance organic photodiodes for their medical and industrial applications for the next-generation.

As the first research focus, A dielectric / metal / dielectric (DMD) transparent electrode is proposed for the top-illumination OPDs. The fabricated DMD transparent electrode showed the maximum optical transmittance of 85.7% with sheet resistance of 6.2 Ω/sq. In the second part of the thesis, a development of novel transfer process which enables the dark current suppression for the inverted OPD devices will be discussed. Through the effort, we demonstrated OPD with high D* of 4.82 x 1012 cm·Hz1/2W-1 at reverse bias of 1.5 V with dark current density (Jdark) of 7.7 nA/cm2 and external quantum efficiency (EQE) of 60 %. Additionally in the third part, we investigate a high performance low-bandgap polymer OPD with broadband spectrum. By utilizing the novel transfer process to introduce charge blocking layers, significant suppression of the dark current is achieved while high EQE of the device is preserved. A low Jdark of 5 nA/cm2 at reverse bias of 0.5 V was achieved resulting in the highest D* of 1.5 x 1013 cm·Hz1/2W-1. To investigate the benefit for the various OPD applications, we developed a novel 3D printing technique to fabricate OPD on hemispherical concave substrate. The techniques allowed the direct patterning of the OPD devices on hemispherical substrates without excessive strain or deformation. Lastly, a simulation of the OPD stacked a-InSnZnO TFT active pixel sensor pixel (APS) with external transimpedance amplifier (TIA) readout circuit was performed.

Sponsored by

ECE

Faculty Host

Prof. Jerzy Kanicki