Dissertation Defense

Energy Efficient Pipeline ADCs Using Ring Amplifiers

Yong Lim

Pipeline ADCs require accurate amplification. Traditionally, an operational transconductance amplifier (OTA) configured as a switched-capacitor (SC) amplifier performs such amplification. However, traditional OTAs limit the power efficiency of ADCs since they require high quiescent current for slewing. In addition, it is difficult to design low-voltage OTAs in modern, scaled CMOS. The ring amplifier is an energy efficient and high output swing alternative to an OTA for SC circuits which is basically a three-stage inverter amplifier stabilized in a feedback configuration. However, the conventional ring amplifier requires external biases, which makes the ring amplifier less practical when we consider process, supply voltage, and temperature (PVT) variation. In this dissertation, three types of innovative ring amplifiers are presented and verified with state-of-the-art energy efficient pipeline ADCs which overcome the limitations of the conventional ring amplifier and further improve energy efficiency. The first topic of this dissertation is a self-biased ring amplifier that makes the ring amplifier more practical and power efficient, while maintaining the benefits of efficient slew-based charging and an almost rail-to-rail output swing. In addition, the ring amplifiers are also used as a 1.5b sub-ADC by using a unique characteristic of the ring amplifier. This removes the need for dedicated comparators in sub-ADCs, thus reducing the power consumption of the ADC. The prototype 10.5b 100 MS/s comparator-less pipeline ADC with the self-biased ring amplifiers has measured SNDR, SNR and SFDR of 56.6 dB (9.11b), 57.5 dB and 64.7 dB, respectively, and consumes 2.46 mW, which results in Walden Figure-of-Merit (FoM) of 46.1 fJ/ conversion ^™step. The second topic is a fully-differential ring amplifier, which solves the problems of single-ended ring amplifiers while maintaining the benefits of the single-ended ring amplifiers. This differential ring-amplifier is applied in a 13b 50 MS/s SAR-assisted pipeline ADC. Furthermore, an improved capacitive DAC switching method for the first stage SAR reduces the DAC linearity errors and switching energy. The prototype ADC achieves measured SNDR, SNR and SFDR of 70.9 dB (11.5b), 71.3 dB and 84.6 dB, respectively, and consumes 1 mW. This measured performance is equivalent to Walden and Schreier FoMs of 6.9 fJ/conversion ^™step and 174.9 dB, respectively. The last topic is a four-stage fully-differential ring amplifier which improves the small-signal gain to over 90 dB without compromising speed. In addition, a new auto-zero noise filtering method reduces noise without consuming additional power. This is more area efficient than the conventional auto-zero noise folding reduction technique. The prototype 15b 100 MS/s calibration-free SAR-assisted pipeline ADC using the four-stage ring amplifier achieves 73.2 dB SNDR (11.9b) and 90.4 dB SFDR with a 1.1 V supply. It consumes 2.3 mW resulting in Schreier FoM of 176.6 dB.

Sponsored by

Professor Michael Flynn

Faculty Host

Professor Michael Flynn